Supersolvable Group

Supersolvable Group

Description

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mathematics, a group is supersolvable (or supersoluble) if it has an invariant normal series where all the factors are cyclic groups. Supersolvability is stronger than the notion of solvability.Let G be a group. G is supersolvable if there exists a normal series \{1\} = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_{s-1} \triangleleft H_s = G such that each quotient group H_{i+1}/H_i \; is cyclic and each Hi is normal in G.By contrast, for a solvable group the definition requires each quotient to be abelian. In another direction, a polycyclic group must have a normal series with each quotient cyclic, but there is no requirement that each Hi be normal in G. As every finite soluble group is polycyclic, this can be seen as one of the key differences between the definitions.

Download Supersolvable Group (9786139184644).pdf, available at johnaxavier.com for free.

Details

Author(s)
Noelia Penelope Greer
Format
Paperback | 108 pages
Dimensions
152 x 229 x 7mm | 168g
Publication date
04 Jan 2012
Publisher
Patho Publishing
Publication City/Country
United States
Language
English
Edition Statement
Aufl.
Illustrations note
black & white illustrations
ISBN10
6139184649
ISBN13
9786139184644